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A forced piston - like displacement of one fluid by another under an arbit - 
rary nonlinear filtration law, is considered. An exact solution of the prob- 
lem is given for the one - dimensional case, and two approximate solutions 
for the two - dimensional case. 

1. Let the medium be inhomogeneous and nondeformable, the fluid incompressible 
and its motion described by an arbitrary, in general nonlinear filtration law. Let the 
domain of filtration be bounded by two fixed boundaries L, and Lk. , and occupied by 
two fluids of different physical properties, displaced by a piston - like motion. The mo- 
ving boundary L separating the fluids divides the filtration domain into two zones the 

filtration equations in which [l] 

grad ‘p, = F, :, div v, = 0 
cl 

(1.1) 

‘kja = --p, - YaZ, cc=l,?, 

Here F, is an experimental function depending on the rate of filtration modulus 0,~ 
viscosity 11~ and density pa of the fluids, permeability k and porosity m of the 

medium ; P, is the pressure, ya is the specific weight of the fluids and z is the ver- 

tical coordinate. 
In the case of two- dimensional filtration in a layer of variable thickness l/?i 

lying on the surface on which an orthogonal P, Q - coordinate system is defined, Eqs . 

(1.1) become (see [Z]) 

F,-‘is the inverse of F,, Jf/E’and Jfc are the coefficients of the surface coordinate 
network and 9, is the stream function. The system (1.2) yields the following equa - 



On motion of the separation boundary of fluids 775 

If the boundaries L, and .L& denote the contour of the hole and the feed, respec - 
tively , and constant pressures P, are specified at these contours, then the condition 

for ‘P= will be 
[(PIILS = CFSY I%lLk = rpk (1.4) 

The conditions of continuity of pressure and normal velocity components which hold at 
the boundary L , can be written in the form 

I% + VI+, = 1% + %sfL (1.5) 

E;’ 8% 1 +ia-g-zi- L 

We shall seek the equation of the boundary 

Pt = PL fG r& 

I Fi' = 1 grad ‘p2 1 %? 1 L 

L in the parametric form 

41, = 4L fG rof 

where ‘co is the parameter. At the initial instant t = 0 the equation of the boundary 
is known, and is 

PO = PL (0, r0), QII = 4t (07 %I (1.6) 

The physical velocity of the fluid particles dr i dt and the rate of filtration v are 
connected by the relation dr i dt = v i m, therefore the differential equations of the 
boundary I, will have the form 

(1.7) 

The above equations should be integrated together with: (1.3)) the boundary conditions 
(1.4)) (1.5) and the initial condition (1.6), this is a difficult problem, 

2. In the particular case of one - dime~ional filtration the problem posed above 
admits an exact solution in a finite form. Namely, the filtration will take place along 
the lines p = con&provided that the following restrictions are imposed on the surface 
coordinate network and on the laws of variation in the thickness permeability and poro- 

sity of the layer: 

IQ- V-77 = A (p)B (4), 1/G = C (Q) GL1) 

2 = 2 fQ)t k = k (PI, m = m (9) 

Here A (p) and B (q), C (4) are some functions of p and q. The contours of the hole 
L, and the feed LI, will be situated along the lines q = qs and Q = qk, and the boun- 
dary L will follow the lines q = const for the initial and subsequent instants of time. 

In this case Eqs. (1.3) and conditions (1.4) , (1.5) together yield 

,I=,,+[ F,dg, 

Q 

CPZ=‘P~+ 1 F&t (2.2) 

0s ‘Ik 

from which it follows that the flow rate will be 
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where h (qr,) is determined by the equation 

‘IL 9. 

j l/FF,dq + j 
.h 

T/%drl + cp, - ‘pI, + (I’I - V2) z = ” 

(‘S ‘1 I, 

F, = J’, (h (q&4 (p) i (i/El’=), pa, pa, k, m), a = 1, 2 

Then from (1.6) and (1.7) it follows that the determination of the boundary L sepa - 
rating the fluids can be reduced to the problem of computing the quadrature 

(2.3) 

8, In the case of two - dimentional filtration two consecutive approximate solu - 
Eons in a finite form can be obtained for the problem of displacement of the boundary 
separating the fluids. 

In the first approximation we assume that the physical properties of the fluids are 
the same (one fluid system) and, that a solution of (1.3) can be found in the form 

cp = Q (A, Pl Q) + M (3. I) 

where A and M are constants obtained from the boundary condition (1.4). Then the 
system (1.2) will yield the stream function 1c, (p, q). 

Since in the present case the boundary L consists of the specified fluid particles, 
the equation of streamlines $ (p, 9) = 11, (pO, qO) = a, or in the parametric form 

P = P (r, a), Q = !7 0, a) (a = a (to) = const) (3.2) 

is the first integral of the differential equations (1. ‘7). Then the equation of the boun - 
dary L becomes 

PL = P (TL, 4, 41, = 4 (TL’ 4 (3.3) 

where the parameter zL defining the position of the point of the boundary on the stream- 
line (3.2) should be determined as a function of time. In accordance with (1.7), the 
equation of motion of a point of the boundary along the streamline (3.2) is 

[dS i dtlT=TL = IF-1 / rnlTETL 

or 

(3.4) 

where k and m can be written, with the help of (3.2), as functions of r and a. We 
shall count rL from the initial position of the boundary L. Then the equation (3.4) 
will have to be integrated with the initial condition rL It=,, = 0, and this gives 

(3.5) 
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from which we have 
Tn = + (t, a) (3.6) 

Then (3.3) and (3.6) together will yield the equation of the boundary L in the first 
approximation. In the second approximation we adopt the scheme of rigid streamlines 

[3]. The stream function of the first approximation is used here again. Since the 
streamlines do not refract in the boundary L , the second condition of (1.5) of conti- 
nuity of the normal velocity components can be replaced by the condition that the ve- 

locity vectors are equal to each other, i. e. 

.J;l grad ‘pl 1 IY F;l grad q2 

IwdcplI L = I lead%1 L 
(3.7) 

Consequently the first condition of (1.5) and (3.7) will hold at the boundary I, . We 
shall write this condition in the form of a projection on the tangent to the streamline 

Iv1 + Y14T,5L = IT2 + Y24=~L~ L~;L,, = lF,‘l,,,, (3.8) 

Making use of the solution (3. l), we seek the function qa along the streamline (3.2) 
in form 

(P==~=(A=(rL),P,Q)+M,(TL), a=l,2 (3.9) 

where A, and M, are determined as functions of zL from the boundary conditions 
(1.4) and (3.8). Substituting (3.9) into (3.5), we obtain 

‘CL = 22’ (t, a) (3.10) 

Then (3.3) and (3.10) will together yield the equation of the boundary L in the finite 
form , in the second approximation. 

4. As an example we shall consider the motion of the boundary separating the 

fluids towards a real operational well, in a plane (1/E = r, I/z = 1) homogeneous 
stratum (k = eon&, m = con&) . The following conditions are given at the well of ra- 
dius rs and at the concentric feed contour of radius rk : 

[%l,,,s = ‘p,, hlr~3’~ = ‘PI, (4.1) 

The equation of the boundary at the initial instant of time is known 

To = ro (TO), 60 = 60 (To) (4.2) 

Let us solve the problem in the first approximation. The flow is uniform, therefore 
(1.3) yields the following function satisfying the conditions (1.4): 

Here Q denotes the output of the well per unit thickness of the stratum, and can be 
found from the relation given in brackets. In this case it is expedient to choose the pa- 

rameter zL in the form zn = r. - rL where rL is the distance between the boundary 

L and the center of the well. Then in accordance with (3.5), (4.2) and (4.3). we 
have the following equation of the boundary in the first approximation: 

r 
L= 1/ ro2(zo) - Qt xfn a eo= 0” PO) 
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Next we obtain the solution of the problem in the second approximation, nt the boun- 
dary L the conditions (3.8) assume the form 

(4.5) 

In this case the function (pa satisfying the conditions (4.1) and (4.5), becomes 

t 

s rk 

91= 9, - F&-t v2 = cp’,-i- 
J 

F2dr (4.6) 

TS r 

and the equation of the boundary L in the second approximation is 

70 (50) 

t = 2nm 
s 

rLdrL 

‘L Q’ 

aI = 00 m 
(4.7) 

5, We use the results obtained to investigate the effect of the nonlinearity of the 

filtration law on the motion of the boundary L. 
We shall only deal with the first approximation, Let the filtration be governed by 

the following two- term law [43 : 

F+v+@v2 (5.1) 

and let the boundary L at the initial instant be a straight line separated from the ot - 
axis by the distance k 

r. sin eb = h (0 < 30 d a) 

According to (4.4) the equation of the boundary is 

The boundary will reach the well most rapidly by moving in the shortest direction fJo = 
n I 2. If we assume that rg e h, the displacement of the boundary in this direction 

will be 

where T denotes the time in which the boundary will reach the well when the filtra - 
tion is linear. 

Figure 1 shows the displacement of the boundary in the direction O0 = x / 2 when 
the filtration is linear, i.e. when p = 0 and consequently b = 0, and for the nonlinear 
filtration when b = 1, 5 and 10. We see that the nonlinearity of the fil~a~on law 
(5.1) slows down the motion of tie boundary. 
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Fig. 1 
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